Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37642704

RESUMO

PURPOSE: Fluorescence-guided surgery (FGS) can play a key role in improving radical resection rates by assisting surgeons to gain adequate visualization of malignant tissue intraoperatively. Designed ankyrin repeat proteins (DARPins) possess optimal pharmacokinetic and other properties for in vivo imaging. This study aims to evaluate the preclinical potential of epithelial cell adhesion molecule (EpCAM)-binding DARPins as targeting moieties for near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging of cancer. METHODS: EpCAM-binding DARPins Ac2, Ec4.1, and non-binding control DARPin Off7 were conjugated to IRDye 800CW and their binding efficacy was evaluated on EpCAM-positive HT-29 and EpCAM-negative COLO-320 human colon cancer cell lines. Thereafter, NIRF and PA imaging of all three conjugates were performed in HT-29_luc2 tumor-bearing mice. At 24 h post-injection, tumors and organs were resected and tracer biodistributions were analyzed. RESULTS: Ac2-800CW and Ec4.1-800CW specifically bound to HT-29 cells, but not to COLO-320 cells. Next, 6 nmol and 24 h were established as the optimal in vivo dose and imaging time point for both DARPin tracers. At 24 h post-injection, mean tumor-to-background ratios of 2.60 ± 0.3 and 3.1 ± 0.3 were observed for Ac2-800CW and Ec4.1-800CW, respectively, allowing clear tumor delineation using the clinical Artemis NIRF imager. Biodistribution analyses in non-neoplastic tissue solely showed high fluorescence signal in the liver and kidney, which reflects the clearance of the DARPin tracers. CONCLUSION: Our encouraging results show that EpCAM-binding DARPins are a promising class of targeting moieties for pan-carcinoma targeting, providing clear tumor delineation at 24 h post-injection. The work described provides the preclinical foundation for DARPin-based bimodal NIRF/PA imaging of cancer.

2.
Cancers (Basel) ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37568714

RESUMO

Fluorescence-guided surgery (FGS), based on fluorescent tracers binding to tumor-specific biomarkers, could assist surgeons to achieve complete tumor resections. This study evaluated potential biomarkers for FGS in pediatric Ewing sarcoma (ES). Immunohistochemistry (IHC) was performed to assess CD99, CXCR4, CD117, NPY-R-Y1, and IGF-1R expression in ES biopsies and resection specimens. LINGO-1 and GD2 evaluation did not work on the acquired tissue. Based on the immunoreactive scores, anti-CD99 and anti-CD117 were evaluated for binding specificity using flow cytometry and immunofluorescence microscopy. Anti-GD2, a tracer in the developmental phase, was also tested. These three tracers were topically applied to a freshly resected ES tumor and adjacent healthy tissue. IHC demonstrated moderate/strong CD99 and CD117 expression in ES tumor samples, while adjacent healthy tissue had limited expression. Flow cytometry and immunofluorescence microscopy confirmed high CD99 expression, along with low/moderate CD117 and low GD2 expression, in ES cell lines. Topical anti-CD99 and anti-GD2 application on ES tumor showed fluorescence, while anti-CD117 did not show fluorescence for this patient. In conclusion, CD99-targeting tracers hold promise for FGS of ES. CD117 and GD2 tracers could be potential alternatives. The next step towards development of ES-specific FGS tracers could be ex vivo topical application experiments on a large cohort of ES patients.

3.
Cancers (Basel) ; 15(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36900379

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers. Given the currently limited therapeutic options, the definition of molecular subgroups with the development of tailored therapies remains the most promising strategy. Patients with high-level gene amplification of urokinase plasminogen activator receptor (uPAR/PLAUR) have an inferior prognosis. We analyzed the uPAR function in PDAC to understand this understudied PDAC subgroup's biology better. METHODS: A total of 67 PDAC samples with clinical follow-up and TCGA gene expression data from 316 patients were used for prognostic correlations. Gene silencing by CRISPR/Cas9, as well as transfection of uPAR and mutated KRAS, were used in PDAC cell lines (AsPC-1, PANC-1, BxPC3) treated with gemcitabine to study the impact of these two molecules on cellular function and chemoresponse. HNF1A and KRT81 were surrogate markers for the exocrine-like and quasi-mesenchymal subgroup of PDAC, respectively. RESULTS: High levels of uPAR were correlated with significantly shorter survival in PDAC, especially in the subgroup of HNF1A-positive exocrine-like tumors. uPAR knockout by CRISPR/Cas9 resulted in activation of FAK, CDC42, and p38, upregulation of epithelial makers, decreased cell growth and motility, and resistance against gemcitabine that could be reversed by re-expression of uPAR. Silencing of KRAS in AsPC1 using siRNAs reduced uPAR levels significantly, and transfection of mutated KRAS in BxPC-3 cells rendered the cell more mesenchymal and increased sensitivity towards gemcitabine. CONCLUSIONS: Activation of uPAR is a potent negative prognostic factor in PDAC. uPAR and KRAS cooperate in switching the tumor from a dormant epithelial to an active mesenchymal state, which likely explains the poor prognosis of PDAC with high uPAR. At the same time, the active mesenchymal state is more vulnerable to gemcitabine. Strategies targeting either KRAS or uPAR should consider this potential tumor-escape mechanism.

4.
Biomedicines ; 11(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979961

RESUMO

INTRODUCTION: Myxofibrosarcoma (MFS) is the most common soft-tissue sarcoma subtype in elderly patients. Local recurrence (LR) remains a major concern as the lack of intraoperative guidance and an infiltrative growth pattern with long, slender tails hamper surgeons' ability to achieve adequate resection margins for MFS. Fluorescence-guided surgery (FGS) could overcome this concern by delineating tumor tissue during surgery. One of the most important steps to successful FGS is to define a tumor-specific biomarker that is highly overexpressed in tumor tissue while low or absent in adjacent healthy tissue. The aim of this study is to evaluate the expression of eight previously selected promising biomarkers for FGS in MFS tissue samples with adjacent healthy tissue using immunohistochemistry (IHC). METHODS: The following eight biomarkers were stained in seventeen paraffin-embedded MFS samples: tumor endothelial marker-1 (TEM-1, also known as endosialin/CD248), vascular endothelial growth factor receptor-1 (VEGFR-1, also known as Flt-1), vascular endothelial growth factor receptor-2 (VEGFR-2, also known as Flk1), vascular endothelial growth factor-A (VEGF-A), epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), platelet derived growth factor receptor-α (PDGFR-α), and cluster of differentiation 40 (CD40, also known as TNFRSF5). A pathologist specializing in sarcoma annotated the margin between the tumor and adjacent healthy tissue in each MFS tissue sample. Subsequently, we used an objective IHC scoring method to assess and compare the difference in staining intensity between the tumor and adjacent healthy tissue, which is crucial for the use of FGS. RESULTS: TEM-1, VEGF-A, and PDGFR-α stained all MFS tumors, while the other biomarkers did not show expression in all MFS tumors. Ultimately, TEM-1 was identified as the most suitable biomarker for FGS in MFS based on higher tumor-to-background (TBR) staining intensity compared to VEGF-A and PDGFR-α, regardless of preoperative therapy. CONCLUSION: TEM-1-targeted FGS tracers should be further investigated to optimize MFS treatment.

5.
United European Gastroenterol J ; 11(3): 282-292, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36931635

RESUMO

BACKGROUND: Differentiating high-grade dysplasia (HGD) and T1 colorectal cancer (T1CRC) from low-grade dysplasia (LGD) in colorectal polyps can be challenging. Incorrect recognition of HGD or T1CRC foci can lead to a need for additional treatment after local resection, which might not have been necessary if it was recognized correctly. Tumor-targeted fluorescence-guided endoscopy might help to improve recognition. OBJECTIVE: Selecting the most suitable HGD and T1CRC-specific imaging target from a panel of well-established biomarkers: carcinoembryonic antigen (CEA), c-mesenchymal-epithelial transition factor (c-MET), epithelial cell adhesion molecule (EpCAM), folate receptor alpha (FRα), and integrin alpha-v beta-6 (αvß6). METHODS: En bloc resection specimens of colorectal polyps harboring HGD or T1CRC were selected. Immunohistochemistry on paraffin sections was used to determine the biomarker expression in normal epithelium, LGD, HGD, and T1CRC (scores of 0-12). The differential expression in HGD-T1CRC components compared to surrounding LGD and normal components was assessed, just as the sensitivity and specificity of each marker. RESULTS: 60 specimens were included (21 HGD, 39 T1CRC). Positive expression (score >1) of HGD-T1CRC components was found in 73.3%, 78.3%, and 100% of cases for CEA, c-MET, and EpCAM, respectively, and in <40% for FRα and αvß6. Negative expression (score 0-1) of the LGD component occurred more frequently for CEA (66.1%) than c-MET (31.6%) and EpCAM (0%). The differential expression in the HGD-T1CRC component compared to the surrounding LGD component was found for CEA in 66.7%, for c-MET in 43.1%, for EpCAM in 17.2%, for FRα in 22.4%, and for αvß6 in 15.5% of the cases. Moreover, CEA showed the highest combined sensitivity (65.0%) and specificity (75.0%) for the detection of an HGD-T1CRC component in colorectal polyps. CONCLUSION: Of the tested targets, CEA appears the most suitable to specifically detect HGD and T1 cancer foci in colorectal polyps. An in vivo study using tumor-targeted fluorescence-guided endoscopy should confirm these findings.


Assuntos
Pólipos do Colo , Neoplasias Colorretais , Humanos , Antígeno Carcinoembrionário , Pólipos do Colo/diagnóstico , Pólipos do Colo/cirurgia , Molécula de Adesão da Célula Epitelial , Endoscopia Gastrointestinal , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/cirurgia
7.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36765858

RESUMO

Inadequate resection margins in head and neck squamous cell carcinoma surgery necessitate adjuvant therapies such as re-resection and radiotherapy with or without chemotherapy and imply increasing morbidity and worse prognosis. On the other hand, taking larger margins by extending the resection also leads to avoidable increased morbidity. Oropharyngeal squamous cell carcinomas (OPSCCs) are often difficult to access; resections are limited by anatomy and functionality and thus carry an increased risk for close or positive margins. Therefore, there is a need to improve intraoperative assessment of resection margins. Several intraoperative techniques are available, but these often lead to prolonged operative time and are only suitable for a subgroup of patients. In recent years, new diagnostic tools have been the subject of investigation. This study reviews the available literature on intraoperative techniques to improve resection margins for OPSCCs. A literature search was performed in Embase, PubMed, and Cochrane. Narrow band imaging (NBI), high-resolution microendoscopic imaging, confocal laser endomicroscopy, frozen section analysis (FSA), ultrasound (US), computed tomography scan (CT), (auto) fluorescence imaging (FI), and augmented reality (AR) have all been used for OPSCC. NBI, FSA, and US are most commonly used and increase the rate of negative margins. Other techniques will become available in the future, of which fluorescence imaging has high potential for use with OPSCC.

8.
Mol Diagn Ther ; 27(2): 261-273, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36656512

RESUMO

BACKGROUND: Targeted molecular imaging may improve tumor cell identification during diagnosis and resection of pancreatic ductal adenocarcinoma (PDAC). Although many molecular imaging biomarkers are (over)expressed in PDAC, intertumoral heterogeneity of biomarker expression hampers universal tracer administration. Preoperative, patient-specific screening and selection of the most optimal biomarker could therefore improve tumor delineation. OBJECTIVE: This study evaluated whether fine-needle biopsy (FNB) specimens could be used to preoperatively predict biomarker expression in the corresponding primary PDAC specimen. METHODS: Expression of previously identified PDAC biomarkers αvß6, CEACAM5, EGFR, mesothelin, Lea/c/x, and sdi-Lea on FNB and corresponding primary tumor (PT) specimens (n = 45) was evaluated using immunohistochemistry and quantified using a semi-automated image analysis workflow. RESULTS: Biomarker expression on FNB and PT tissues showed high concordance (∆H-score ≤ 50), i.e. was present in 62% of cases for αvß6, 61% for CEACAM5, 85% for EGFR, 69% for mesothelin, 76% for Lea/c/x, and 79% for sdi-Lea, indicating high concordance. Except for αvß6, biomarker expression on FNB tissues was positively correlated with PT expression for all biomarkers. Subgroup analyses showed that neoadjuvant therapy (NAT) had no major and/or significant effect on concordance, expression difference and, except for mesothelin, correlation of biomarker expression between FNB and PT tissues. CONCLUSION: This study demonstrated that biomarker expression in FNB tissues is predictive for PT expression, irrespective of the application of NAT. These findings thereby provide the foundation for the clinical application of an FNB-based biomarker-screening workflow, eventually facilitating a patient-specific approach of molecular imaging tracer administration in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Biópsia por Agulha Fina , Mesotelina , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Biomarcadores , Imagem Molecular , Receptores ErbB , Neoplasias Pancreáticas
9.
Mol Imaging Biol ; 25(1): 228-239, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36575340

RESUMO

PURPOSE: Intraoperative identification of lung tumors can be challenging. Tumor-targeted fluorescence-guided surgery can provide surgeons with a tool for real-time intraoperative tumor detection. This study evaluated cell surface biomarkers, partially selected via data-driven selection software, as potential targets for fluorescence-guided surgery in non-small cell lung cancers: adenocarcinomas (ADC), adenocarcinomas in situ (AIS), and squamous cell carcinomas (SCC). PROCEDURES: Formalin-fixed paraffin-embedded tissue slides of resection specimens from 15 patients with ADC and 15 patients with SCC were used and compared to healthy tissue. Molecular targets were selected based on two strategies: (1) a data-driven selection using > 275 multi-omics databases, literature, and experimental evidence; and (2) the availability of a fluorescent targeting ligand in advanced stages of clinical development. The selected targets were carbonic anhydrase 9 (CAIX), collagen type XVII alpha 1 chain (collagen XVII), glucose transporter 1 (GLUT1), G protein-coupled receptor 87 (GPR87), transmembrane protease serine 4 (TMPRSS4), carcinoembryonic antigen (CEA), epithelial cell adhesion molecule (EpCAM), folate receptor alpha (FRα), integrin αvß6 (αvß6), and urokinase-type plasminogen activator receptor (uPAR). Tumor expression of these targets was assessed by immunohistochemical staining. A total immunostaining score (TIS, range 0-12), combining the percentage and intensity of stained cells, was calculated. The most promising targets in ADC were explored in six AIS tissue slides to explore its potential in non-palpable lesions. RESULTS: Statistically significant differences in TIS between healthy lung and tumor tissue for ADC samples were found for CEA, EpCAM, FRα, αvß6, CAIX, collagen XVII, GLUT-1, and TMPRSS4, and of these, CEA, CAIX, and collagen XVII were also found in AIS. For SCC, EpCAM, uPAR, CAIX, collagen XVII, and GLUT-1 were found to be overexpressed. CONCLUSIONS: EpCAM, CAIX, and Collagen XVII were identified using concomitant use of data-driven selection software and clinical evidence as promising targets for intraoperative fluorescence imaging for both major subtypes of non-small cell lung carcinomas.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Antígeno Carcinoembrionário , Molécula de Adesão da Célula Epitelial , Fluorescência , Receptores de Ácidos Lisofosfatídicos
10.
Mol Imaging Biol ; 25(1): 122-132, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34642899

RESUMO

PURPOSE: Radical resection is paramount for curative oncological surgery. Fluorescence-guided surgery (FGS) aids in intraoperative identification of tumor-positive resection margins. This study aims to assess the feasibility of urokinase plasminogen activator receptor (uPAR) targeting antibody fragments for FGS in a direct comparison with their parent IgG in various relevant in vivo models. PROCEDURES: Humanized anti-uPAR monoclonal antibody MNPR-101 (uIgG) was proteolytically digested into F(ab')2 and Fab fragments named uFab2 and uFab. Surface plasmon resonance (SPR) and cell assays were used to determine in vitro binding before and after fluorescent labeling with IRDye800CW. Mice bearing subcutaneous HT-29 human colonic cancer cells were imaged serially for up to 120 h after fluorescent tracer administration. Imaging characteristics and ex vivo organ biodistribution were further compared in orthotopic pancreatic ductal adenocarcinoma (BxPc-3-luc2), head-and-neck squamous cell carcinoma (OSC-19-luc2-GFP), and peritoneal carcinomatosis (HT29-luc2) models using the clinical Artemis fluorescence imaging system. RESULTS: Unconjugated and conjugated uIgG, uFab2, and uFab specifically recognized uPAR in the nanomolar range as determined by SPR and cell assays. Subcutaneous tumors were clearly identifiable with tumor-to-background ratios (TBRs) > 2 after 72 h for uIgG-800F and 24 h for uFab2-800F and uFab-800F. For the latter two, mean fluorescence intensities (MFIs) dipped below predetermined threshold after 72 h and 36 h, respectively. Tumors were easily identified in the orthotopic models with uIgG-800F consistently having the highest MFIs and uFab2-800F and uFab-800F having similar values. In biodistribution studies, kidney and liver fluorescence approached tumor fluorescence after uIgG-800F administration and surpassed tumor fluorescence after uFab2-800F or uFab-800F administration, resulting in interference in the abdominal orthotopic mouse models. CONCLUSIONS: In a side-by-side comparison, FGS with uPAR-targeting antibody fragments compared with the parent IgG resulted in earlier tumor visualization at the expense of peak fluorescence intensity.


Assuntos
Neoplasias Pancreáticas , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Animais , Humanos , Camundongos , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Corantes Fluorescentes , Fragmentos Fab das Imunoglobulinas , Imunoglobulina G , Imagem Óptica/métodos , Neoplasias Pancreáticas/patologia , Distribuição Tecidual
11.
Cancers (Basel) ; 13(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885116

RESUMO

Surgical removal of vulvar squamous cell carcinoma (VSCC) is associated with significant morbidity and high recurrence rates. This is at least partially related to the limited visual ability to distinguish (pre)malignant from normal vulvar tissue. Illumination of neoplastic tissue based on fluorescent tracers, known as fluorescence-guided surgery (FGS), could help resect involved tissue and decrease ancillary mutilation. To evaluate potential targets for FGS in VSCC, immunohistochemistry was performed on paraffin-embedded premalignant (high grade squamous intraepithelial lesion and differentiated vulvar intraepithelial neoplasia) and VSCC (human papillomavirus (HPV)-dependent and -independent) tissue sections with healthy vulvar skin as controls. Sections were stained for integrin αvß6, CAIX, CD44v6, EGFR, EpCAM, FRα, MRP1, MUC1 and uPAR. The expression of each marker was quantified using digital image analysis. H-scores were calculated and percentages positive cells, expression pattern, and biomarker localization were assessed. In addition, tumor-to-background ratios were established, which were highest for (pre)malignant vulvar tissues stained for integrin αvß6. In conclusion, integrin αvß6 allowed for the most robust discrimination of VSCCs and adjacent premalignant lesions compared to surrounding healthy tissue in immunohistochemically stained tissue sections. The use of an αvß6 targeted near-infrared fluorescent probe for FGS of vulvar (pre)malignancies should be evaluated in future studies.

12.
Cancers (Basel) ; 13(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885196

RESUMO

BACKGROUND: Despite recent advances in the multimodal treatment of pancreatic ductal adenocarcinoma (PDAC), overall survival remains poor with a 5-year cumulative survival of approximately 10%. Neoadjuvant (chemo- and/or radio-) therapy is increasingly incorporated in treatment strategies for patients with (borderline) resectable and locally advanced disease. Neoadjuvant therapy aims to improve radical resection rates by reducing tumor mass and (partial) encasement of important vascular structures, as well as eradicating occult micrometastases. Results from recent multicenter clinical trials evaluating this approach demonstrate prolonged survival and increased complete surgical resection rates (R0). Currently, tumor response to neoadjuvant therapy is monitored using computed tomography (CT) following the RECIST 1.1 criteria. Accurate assessment of neoadjuvant treatment response and tumor resectability is considered a major challenge, as current conventional imaging modalities provide limited accuracy and specificity for discrimination between necrosis, fibrosis, and remaining vital tumor tissue. As a consequence, resections with tumor-positive margins and subsequent early locoregional tumor recurrences are observed in a substantial number of patients following surgical resection with curative intent. Of these patients, up to 80% are diagnosed with recurrent disease after a median disease-free interval of merely 8 months. These numbers underline the urgent need to improve imaging modalities for more accurate assessment of therapy response and subsequent re-staging of disease, thereby aiming to optimize individual patient's treatment strategy. In cases of curative intent resection, additional intra-operative real-time guidance could aid surgeons during complex procedures and potentially reduce the rate of incomplete resections and early (locoregional) tumor recurrences. In recent years intraoperative imaging in cancer has made a shift towards tumor-specific molecular targeting. Several important molecular targets have been identified that show overexpression in PDAC, for example: CA19.9, CEA, EGFR, VEGFR/VEGF-A, uPA/uPAR, and various integrins. Tumor-targeted PET/CT combined with intraoperative fluorescence imaging, could provide valuable information for tumor detection and staging, therapy response evaluation with re-staging of disease and intraoperative guidance during surgical resection of PDAC. METHODS: A literature search in the PubMed database and (inter)national trial registers was conducted, focusing on studies published over the last 15 years. Data and information of eligible articles regarding PET/CT as well as fluorescence imaging in PDAC were reviewed. Areas covered: This review covers the current strategies, obstacles, challenges, and developments in targeted tumor imaging, focusing on the feasibility and value of PET/CT and fluorescence imaging for integration in the work-up and treatment of PDAC. An overview is given of identified targets and their characteristics, as well as the available literature of conducted and ongoing clinical and preclinical trials evaluating PDAC-targeted nuclear and fluorescent tracers.

13.
Cancers (Basel) ; 13(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830932

RESUMO

Targeted molecular imaging may overcome current challenges in the preoperative and intraoperative delineation of pancreatic ductal adenocarcinoma (PDAC). Tumor-associated glycans Lea/c/x, sdi-Lea, sLea, sLex, sTn as well as mucin-1 (MUC1) and mucin-5AC (MU5AC) have gained significant interest as targets for PDAC imaging. To evaluate their PDAC molecular imaging potential, biomarker expression was determined using immunohistochemistry on PDAC, (surrounding) chronic pancreatitis (CP), healthy pancreatic, duodenum, positive (LN+) and negative lymph node (LN-) tissues, and quantified using a semi-automated digital image analysis workflow. Positive expression on PDAC tissues was found on 83% for Lea/c/x, 94% for sdi-Lea, 98% for sLea, 90% for sLex, 88% for sTn, 96% for MUC1 and 67% for MUC5AC, where all were not affected by the application of neoadjuvant therapy. Compared to PDAC, all biomarkers were significantly lower expressed on CP, healthy pancreatic and duodenal tissues, except for sTn and MUC1, which showed a strong expression on duodenum (sTn tumor:duodenum ratio: 0.6, p < 0.0001) and healthy pancreatic tissues (MUC1 tumor:pancreas ratio: 1.0, p > 0.9999), respectively. All biomarkers are suitable targets for correct identification of LN+, as well as the distinction of LN+ from LN- tissues. To conclude, this study paves the way for the development and evaluation of Lea/c/x-, sdi-Lea-, sLea-, sLex- and MUC5AC-specific tracers for molecular imaging of PDAC imaging and their subsequent introduction into the clinic.

14.
Biomedicines ; 9(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34680505

RESUMO

Sarcomas are a rare heterogeneous group of malignant neoplasms of mesenchymal origin which represent approximately 13% of all cancers in pediatric patients. The most prevalent pediatric bone sarcomas are osteosarcoma (OS) and Ewing sarcoma (ES). Rhabdomyosarcoma (RMS) is the most frequently occurring pediatric soft tissue sarcoma. The median age of OS and ES is approximately 17 years, so this disease is also commonly seen in adults while non-pleiomorphic RMS is rare in the adult population. The mainstay of all treatment regimens is multimodal treatment containing chemotherapy, surgical resection, and sometimes (neo)adjuvant radiotherapy. A clear resection margin improves both local control and overall survival and should be the goal during surgery with a curative intent. Real-time intraoperative fluorescence-guided imaging could facilitate complete resections by visualizing tumor tissue during surgery. This review evaluates whether non-targeted and targeted fluorescence-guided surgery (FGS) could be beneficial for pediatric OS, ES, and RMS patients. Necessities for clinical implementation, current literature, and the positive as well as negative aspects of non-targeted FGS using the NIR dye Indocyanine Green (ICG) were evaluated. In addition, we provide an overview of targets that could potentially be used for FGS in OS, ES, and RMS. Then, due to the time- and cost-efficient translational perspective, we elaborate on the use of antibody-based tracers as well as their disadvantages and alternatives. Finally, we conclude with recommendations for the experiments needed before FGS can be implemented for pediatric OS, ES, and RMS patients.

16.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946583

RESUMO

Molecular imaging of pathologic lesions can improve efficient detection of cancer and cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-ß (TGF-ß) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction, and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects and their respective synonyms or relevant subterms: "Endoglin", "Imaging/Image-guided surgery". In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro models and one ex vivo study in human organs. In addition to exact data extraction of imaging modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the evidence remains scarce but promising.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Endoglina/análise , Neoplasias/diagnóstico por imagem , Animais , Doenças Cardiovasculares/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias/cirurgia , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons/métodos , Cirurgia Assistida por Computador/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Ultrassonografia/métodos
17.
Diagnostics (Basel) ; 11(3)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799475

RESUMO

Rectal cancer patients with a complete response after neoadjuvant therapy can be monitored with a watch-and-wait strategy. However, regrowth rates indicate that identification of patients with a pathological complete response (pCR) remains challenging. Targeted near-infrared fluorescence endoscopy is a potential tool to improve response evaluation. Promising tumor targets include carcinoembryonic antigen (CEA), epithelial cell adhesion molecule (EpCAM), integrin αvß6, and urokinase-type plasminogen activator receptor (uPAR). To investigate the applicability of these targets, we analyzed protein expression by immunohistochemistry and quantified these by a total immunostaining score (TIS) in tissue of rectal cancer patients with a pCR. CEA, EpCAM, αvß6, and uPAR expression in the diagnostic biopsy was high (TIS > 6) in, respectively, 100%, 100%, 33%, and 46% of cases. CEA and EpCAM expressions were significantly higher in the diagnostic biopsy compared with the corresponding tumor bed (p < 0.01). CEA, EpCAM, αvß6, and uPAR expressions were low (TIS < 6) in the tumor bed in, respectively, 93%, 95%, 85%, and 62.5% of cases. Immunohistochemical evaluation shows that CEA and EpCAM could be suitable targets for response evaluation after neoadjuvant treatment, since expression of these targets in the primary tumor bed is low compared with the diagnostic biopsy and adjacent pre-existent rectal mucosa in more than 90% of patients with a pCR.

18.
Eur J Cancer ; 146: 11-20, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561783

RESUMO

With a 5-year recurrence rate of 30-78%, urothelial cell carcinoma (UCC) rates amongst the highest of all solid malignancies. Consequently, after transurethral resection, patients are subjugated to life-long endoscopic surveillance. A multimodal near-infrared (NIR) fluorescence-based imaging strategy can improve diagnosis, resection and surveillance, hence increasing quality of life. METHODS: Expression of urokinase plasminogen activator receptor (uPAR) and epithelial cell adhesion molecule (EpCAM) are determined on paraffin-embedded human UCC using immunohistochemistry and on UCC cell lines by flow cytometry. MNPR-101, a humanised monoclonal antibody targeting uPAR is conjugated to IRDye800CW and binding is validated in vitro using surface plasmon resonance and cell-based binding assays. In vivo NIR fluorescence and photoacoustic three-dimensional (3D) imaging are performed with subcutaneously growing human UM-UC-3luc2 cells in BALB/c-nude mice. The translational potential is confirmed in a metastasising UM-UC-3luc2 orthotopic mouse model. Infliximab-IRDye800CW and rituximab-IRDye800CW are used as controls. RESULTS: UCCs show prominent uPAR expression at the tumour-stroma interface and EpCAM on epithelial cells. uPAR and EpCAM are expressed by 6/7 and 4/7 UCC cell lines, respectively. In vitro, MNPR-101-IRDye800CW has a picomolar affinity for domain 2-3 of uPAR. In vivo fluorescence imaging with MNPR-101-IRDye800CW, specifically delineates both subcutaneous and orthotopic tumours with tumour-to-background ratios reaching as high as 6.8, differing significantly from controls (p < 0.0001). Photoacoustic 3D in depth imaging confirms the homogenous distribution of MNPR-101-IRDye800CW through the tumour. CONCLUSIONS: MNPR-101-IRDye800CW is suitable for multimodal imaging of UCC, awaiting clinical translation.


Assuntos
Anticorpos Monoclonais/farmacologia , Imagem Molecular/métodos , Imagem Óptica/métodos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Cirurgia Assistida por Computador/métodos , Neoplasias da Bexiga Urinária/diagnóstico , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Receptores de Ativador de Plasminogênio Tipo Uroquinase/imunologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/cirurgia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancers (Basel) ; 13(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535618

RESUMO

Surgery is the mainstay of treatment for localized soft tissue sarcomas (STS). The curative treatment highly depends on complete tumor resection, as positive margins are associated with local recurrence (LR) and prognosis. However, determining the tumor margin during surgery is challenging. Real-time tumor-specific imaging can facilitate complete resection by visualizing tumor tissue during surgery. Unfortunately, STS specific tracers are presently not clinically available. In this review, STS-associated cell surface-expressed biomarkers, which are currently already clinically targeted with monoclonal antibodies for therapeutic purposes, are evaluated for their use in near-infrared fluorescence (NIRF) imaging of STS. Clinically targeted biomarkers in STS were extracted from clinical trial registers and a PubMed search was performed. Data on biomarker characteristics, sample size, percentage of biomarker-positive STS samples, pattern of biomarker expression, biomarker internalization features, and previous applications of the biomarker in imaging were extracted. The biomarkers were ranked utilizing a previously described scoring system. Eleven cell surface-expressed biomarkers were identified from which 7 were selected as potential biomarkers for NIRF imaging: TEM1, VEGFR-1, EGFR, VEGFR-2, IGF-1R, PDGFRα, and CD40. Promising biomarkers in common and aggressive STS subtypes are TEM1 for myxofibrosarcoma, TEM1, and PDGFRα for undifferentiated soft tissue sarcoma and EGFR for synovial sarcoma.

20.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451116

RESUMO

Surgeons rely almost completely on their own vision and palpation to recognize affected tissues during surgery. Consequently, they are often unable to distinguish between different cells and tissue types. This makes accurate and complete resection cumbersome. Targeted image-guided surgery (IGS) provides a solution by enabling real-time tissue recognition. Most current targeting agents (tracers) consist of antibodies or peptides equipped with a radiolabel for Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), magnetic resonance imaging (MRI) labels, or a near-infrared fluorescent (NIRF) dye. These tracers are preoperatively administered to patients, home in on targeted cells or tissues, and are visualized in the operating room via dedicated imaging systems. Instead of using these 'passive' tracers, there are other, more 'active' approaches of probe delivery conceivable by using living cells (macrophages/monocytes, neutrophils, T cells, mesenchymal stromal cells), cell(-derived) fragments (platelets, extracellular vesicles (exosomes)), and microorganisms (bacteria, viruses) or, alternatively, 'humanized' nanoparticles. Compared with current tracers, these active contrast agents might be more efficient for the specific targeting of tumors or other pathological tissues (e.g., atherosclerotic plaques). This review provides an overview of the arsenal of possibilities applicable for the concept of cell-based tracers for IGS.


Assuntos
Rastreamento de Células/métodos , Meios de Contraste , Cirurgia Assistida por Computador/métodos , Micropartículas Derivadas de Células/metabolismo , Humanos , Leucócitos/metabolismo , Imageamento por Ressonância Magnética/métodos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Tomografia por Emissão de Pósitrons/métodos , Cirurgia Assistida por Computador/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...